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Section 2.4 no. 14, 15, 17.

Section 2.4

(14) Show that there exists n ∈ N such that 1/2n < y for any y > 0.

Solution It is equivalent to showing there is some n such that 2n > 1/y. We may simply
imitate the proof of the Archimedean Property 2.4.3. Or, we use Archimedean property to find
some n such that 1/y < n and then use the binomial formula 2n = (1 + 1)n ≥ 1 + n > n.

(17) Show that u3 = 2 is solvable.

Solution Let E = {x ∈ R : x3 < 2}. Clearly E is nonempty. For x ∈ E, x3 < 2 < 8. From
x3 − 8 = (x + 2x + 4)(x − 2) < 0 we see that x < 2, that is E is bounded above by 2. By
Order Completeness z = supE ∈ R exists. We shall show that z3 = 2 by excluding z3 > 2 and
z3 < 2. In case z3 > 2, for some ε ∈ (0, 1) to be chosen later, (z− ε)3 = z3 − 3εz2 +3ε2z− ε3 >
z3−3εz2−ε = (z3−2)−ε(3z2+1)+2. If we further choose ε so that (z3−2)/(3z2+1) ≥ ε, then
(z−ε)3 > 2, contradicting the definition of z. Next, in case z3 < 2, (z+ε)3 = z3+3εz2+3ε2z+ε3.
For ε ∈ (0, 1), z3 + 3εz2 + 3ε2z + ε3 ≤ (z3 − 2) + 2 + 3εz2 + 3εz + ε. Hence if we further choose
ε such that

ε(3z2 + 3z + 1) < 2− z3 ,

we have (z + ε)3 < 2, again contradicting the definition of z.

Supplementary Problems

(1) Prove the Nested Interval Property: Let [an, bn] satisfies [an+1, bn+1] ⊂ [an, bn] for all n ≥ 1.
Show that there is x ∈ R such that x ∈ [an, bn] for all n ≥ 1. Hint: Use the order completeness
property.

Solution Since the intervals are nested, an ≤ an+1 ≤ · · · ≤ b1. The set {an}, n ≥ 1, is bounded
above. By the order completeness property, x ≡ sup{an} exists. If we could prove x ≤ bn for all
n, then x ∈ [an, bn] for all n. Suppose not, that is, x > bn0 for some n0. Since bn0 is an upper
bound for all an, n ≥ n0, and x is the supremum of an’s, bn0 ≥ x. We have arrived at x > x,
contradiction holds.

(2) Find the decimal representation of the numbers 0.502 and 1/7.

(3) Show that there are infinitely many rational and irrational numbers lying between two
distinct numbers.

Solution It suffices to consider 0 < x < y. By Proposition 2.2, there is r1 ∈ Q such that
x < r1 < y. Applying the same prop to x and r1 we get r2 ∈ Q satisfying x < r2 < r1 < y.
Keep doing this we get {rk}, k ≥ 1 in Q lying between x and y. Similar we get irrationals lying
between x and y.

(4) Show that the cardinal number of any interval is equal to the cardinal number of R.
Solution Since every interval I contains an open interval (a, b), |(a, b)| ≤ |I| ≤ R. If one could
show that |(a, b)| = |(0, 1)|, from Proposition 2.7 we conclude |I| ≥ |(a, b)| = |R|. Hence |I| = |R|
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by Schroder-Bernstein. Now the map f(x) = a+ x(b− a) maps (0, 1) bijectively to (a, b), done.

(5) Show that |R2| = |R|. Recall that R2 = {(x, y) : x, y ∈ R}.
Solution The map (x, y) 7→ (tanπ/2(x − 1/2), tanπ/2(y − 1/2)) is bijective from (0, 1)2 to
R2. It suffices to show |(0, 1)2| = |(0, 1)|. The idea is to use the decimal representation. For
z ∈ (0, 1), z = 0.a1a2a3a4a5a6 · · · , we associate it to x = 0.a1a2a3 · · · and y = 0.a2a4a6 · · · to
get a surjective map from (0, 1) to (0, 1)2. Hence |(0, 1)| ≥ |(0, 1)2|. On the other hand, the set
(0, 1)×{1/2} which is just a copy of (0, 1) is a subset of (0, 1)2, hence |(0, 1)2| ≥ |(0, 1)×{1/2}| =
|(0, 1)|. By Schroder-Bernstein Theorem |(0, 1)2| = |(0, 1)|.
Note. By induction |Rn| = |R|.

(6) A real number is called an algebraic number if it is a root of some equation anx
n+an−1x

n−1+
· · ·+ a0 = 0 with integral coefficients. Show that the set of all algebraic numbers is a countable
set containing all rational numbers and numbers of the form a1/k, a > 0, k ≥ 1.

Solution Let An be the set consisting of all equations of degree equal to n, that is, xn +
an−1x

n−1 + · · · + a0 = 0 where aj ∈ Q. An is countable. Let Zn be the set of the roots of the
equations from An. Since each equation has at most n-many real roots, Zn is also countable.
Now the set of all algebraic numbers are

⋃
n Zn, hence it is also countable.

Note It shows that there are uncountably many transcendental numbers.


